Enrollment No:	Exam Seat No:
----------------	---------------

C. U. SHAH UNIVERSITY

Summer Examination-2022

Subject Name: Functional Analysis

Subject Code: 5SC03FUA1 Branch: M.Sc. (Mathematics)

Semester: 3 Date: 25/04/2022 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION - I

Q-1 Attempt the Following questions

(07)

- **a.** The closure of a convex set in a normed space is a _____.
- **b.** State Jensen's inequality.
- c. Let Y be a closed subspace of a normed space X. If x and y are in X then, $||x + y + Y|| \le ||x + Y|| + ||y + Y||$. True or False.
- **d.** Let *X* and *Y* be normed linear spaces. If *X* is finite dimensional then every linear map from *X* to *Y* is continuous. True or False.
- e. If X is a metric space, then both Ø and X are _____ in X
- **f.** If X be a norm linear space then X' is always complete. True or False.
- g. Define: Convex set

Q-2 Attempt all questions

(14) (06)

- **a.** Let $\{a_j\}$ and $\{b_j\}$ be sequence in K. Let $1 and <math>q \in R$ such that p + q = pq. Then show that $\sum_{j=1}^n |a_j b_j| \le \left(\sum_{j=1}^n |a_j|^p\right)^{\frac{1}{p}} \left(\sum_{j=1}^n |b_j|^q\right)^{\frac{1}{q}}$. State the result you use.
- **b.** Let $\|\cdot\|$ and $\|\cdot\|_0$ be norms on a linear space X. When is $\|\cdot\|$ stronger than $\|\cdot\|_0$? Prove that $\|\cdot\|$ and $\|\cdot\|_0$ are equivalent if and only if there are positive constants α and β such that $\alpha \|\cdot\| \le \|\cdot\|_0 \le \beta \|\cdot\|$.

OR

c. State Minkowski's inequality.

Q-2 Attempt all questions

(14)

(02)

a. Let $r, p \in [1, \infty]$ with r < p. Then prove that $l^p \subset l^r$ and $||x||_r \le ||x||_p \quad \forall x \in l^p$.

b. Let
$$l^p = \{x = \{x_j\}_{j=1}^{\infty} \text{ and } \sum_{j=1}^{\infty} |x_j|^p < \infty \},$$
 (06)

		consider $ x _p = \left(\sum_{j=1}^{\infty} x_j ^p\right)^{\frac{1}{p}}$. Then show that $(l^p, \cdot _p)$ is a normed	
		space.	
	c.	Let Y be a closed subspace of a normed space X. If x and y are in X then	(02)
		show that $ x + y + Y \le x + Y + y + Y $.	
Q-3		Attempt all questions	(14)
	a.	Define transpose of bounded linear function. Let <i>X</i> , <i>Y</i> be two norm linear	(07)
		spaces and $F \in BL(X,Y)$ then prove that $F' \in BL(Y',X')$.	
	b.	State and prove Hahn-Banach extension theorem. OR	(07)
Q-3	a.	Let X, Y be two norm linear space and $F: X \to Y$ be a linear map. Then	(08)
		prove the following are equivalent.	
		i. F is bounded on $\overline{U}(0,r)$ for some $r > 0$.	
		ii.F is continuous at 0.	
		iii. F is continuous on X .	
		iv. F is uniformly continuous on X.	
	h	$\ F(x)\ \le \alpha \ x\ $ for all $x \in X$ and some $\alpha > 0$. State and prove Holder's inequality.	(06)
	D.	State and prove Holder's inequality.	(00)
		SECTION – II	
Q-4		Attempt the Following questions	(07)
		Chata Calany's I among	
	a h	State Schur's Lemma.Define spectrum of an operator.	
	C.		
		In which case we can get always unique Hahn – Banach extension?	
	e		
		functional f on X is an open map. True/ False.	
	f.	Define: Absolutely summable series.	
	g	Define: Dual of a norm linear space.	
Q-5		Attempt all questions	(14)
Q U	a.	State and prove closed graph theorem.	(10)
	b.	Let X and Y be Banach spaces. Show that the product space $X \times Y$, with	(04)
		the norm defined by $ (x, y) = x + y , (x, y) \in X \times Y$, is Banach	
		space.	
		OR	
Q-5	a.	State and prove uniform boundedness principal.	(07)
	b.	Let <i>X</i> be a separable normed space. Then show that every bounded	(07)
		sequence in X' has a weak* convergent subsequence.	
Q-6		Attempt all questions	(14)
	a.	Let <i>X</i> be norm linear space then prove that following are equivalent:	(09)
		i) X is a Banach space.	
		ii) Every absolutely summable series in <i>X</i> is summable.	
	b.	J 1	(05)
		subspace of Banach space.	

Q-6 Attempt all Questions

- **a.** Let X be a normed space. Define spectrum, eigen spectrum and approximate eigen spectrum of $A \in BL(X)$. If A is of finite rank, then show that $\sigma_e(A) = \sigma_a(A) = \sigma(A)$.
- **b.** Let Z be a closed subspace of a normed space X. Let $Q: X \to X/Z$ be Q(x) = x + Z. Show that Q is continuous and open. State the result you use. (05)

